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1. Introduction

Numerical solution of the time dependent diffusion equation on non-orthogonal meshes in two spatial
dimensions is an essential feature of typical Lagrangian radiation hydrodynamics simulation codes used for
designing inertial confinement fusion targets and modeling other high energy density plasmas. Electron ther-
mal conduction is treated with a non-linear diffusion equation and radiative transfer is often modeled using
multi-group flux-limited diffusion. For two dimensions, an initially orthogonal mesh can become non-orthog-
onal due to hydrodynamic flow irregularities and the diffusion equation must be numerically differenced on
this non-orthogonal mesh. A novel approach to this problem was reported by Kershaw [1], where he used
a variational method to derive the difference operator corresponding to the continuous diffusion operator
on a non-orthogonal r–z mesh. Kershaw’s method leads to a nine-point differencing stencil and tractable posi-
tive definite matrix solutions for problems of practical significance. It reduces to the standard five-point dif-
ferencing stencil for orthogonal meshes. For this reason Kershaw’s method is often used as a benchmark for
comparison of more recent, higher order methods [2].

In this paper, the discretization scheme developed by Kershaw is extended to three dimensional non-uni-
form hexahedral x–y–z meshes. As three dimensional radiation hydrodynamics simulations become more
commonplace, this three dimensional Kershaw scheme can be a viable approach to solving the diffusion equa-
tion. While higher order discretizations exist, the 3D Kershaw method has the benefit of using only zone cen-
tered unknowns with a local computational stencil making it relatively easy to implement in Lagrangian codes.
Along these lines, the detailed difference equations for the resulting 19 point computational stencil are pre-
sented in this paper. While this scheme has limited accuracy, it can still serve as a benchmark for comparison
of more elaborate higher order, but more expensive schemes.

This extension shares many of the same properties as the original method. The resulting matrix has the ben-
efit of being symmetric positive definite (SPD). However, it is not an ‘‘M-matrix” and therefore negative
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answers are not mathematically forbidden. The convergence properties are also similar to the original method.
In general, first order convergence is expected, except on non-smooth meshes where the accuracy is degraded.
A numerical test is presented which demonstrates this property. Furthermore, the difference equations reduce
to the standard second-order, 7-point scheme as the mesh becomes orthogonal and uniform, therefore higher
order accuracy is expected in this case.

2. Discretizing the diffusion operator

The process for discretizing the diffusion operator closely follows Kershaw’s derivation of the two dimensional
r–z method. The first step involves expressing the diffusion operator as a function of continuous variables K, L, and
M as shown in (1) through (3). The variable, j, defined in (3) is the Jacobian which transforms from the physical
variables (X, Y, Z) to (K, L, M), and is simply the zone volume. The lack of the factors of R that appear in Ker-
shaw’s original derivation is the key mathematical difference between the cylindrical and Cartesian formulations.
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A variational approach, which is embodied in (4), is used for the discretization. The surface integral term
which would normally appear has been set to zero as in the 2D method, because the function, f, is assumed to
be zero on the boundary at this point in the derivation. Although this is not always the case physically (bound-
ary conditions where f is non-zero are allowed and are discussed later), all of the terms involving non-zero
boundary values are moved to the right hand side of the diffusion equation after the discretization occurs.
In other words, the resulting diffusion matrix, A, always has the form consistent with an f = 0 boundary con-
dition and cancelling this term is justified.
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The discrete form of the variational relationship is given in (5). To make this transition, the variables K, L,
and M are now allowed to assume only integer values and are no longer continuous functions. At this point,
they represent the mesh indices where the 3D mesh indexing is shown in Fig. 1.
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Here, A is the matrix representing the finite difference form of the diffusion operator, V is the zone volume, and
B is the matrix representation of the term in brackets in (4). The summation over i appears because there are



Fig. 1. Indexing of mesh points for zone K, L, M.
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eight equally valid representations of the matrix that must be equally averaged to maintain the rotational sym-
metry of the problem. The matrix B is defined in (6).
ðBf ÞK;L;M ¼KK;L;M RK þLK;L;M RL þMK;L;M RM ð6Þ
where,
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The terms R, K, and C represent the face-centered coefficient (D/j)1/2 computed on the K + 1, L + 1, and
M + 1 faces of the zones, respectively. These terms are evaluated by averaging quantities in the zones neigh-
boring each face. For example, R can be averaged as follows:
RK;L;M ¼ 2= jK;L;M=DK;L;M þ jKþ1;L;M=DKþ1;L;M

� �	 
1=2 ð8Þ
K is averaged between zones L and L + 1, and C is averaged between zones M and M + 1. These quantities
can be computed on either zone face in each direction which leads to the following eight representations for
the quantity (Bf). The 2D method requires four B matrices for the same reason.
ðB1f ÞK;L;M ¼KK;L;M RK þLK;L;M RL þMK;L;M RM

ðB2f ÞK;L;M ¼KK�1;L;M RK þLK;L;M RL þMK;L;M RM

ðB3f ÞK;L;M ¼KK;L;M RK þLK;L�1;M RL þMK;L;M RM

ðB4f ÞK;L;M ¼KK;L;M RK þLK;L;M RL þMK;L;M�1RM

ðB5f ÞK;L;M ¼KK�1;L;M RK þLK;L�1;M RL þMK;L;M RM

ðB6f ÞK;L;M ¼KK�1;L;M RK þLK;L;M RL þMK;L;M�1RM

ðB7f ÞK;L;M ¼KK;L;M RK þLK;L�1;M RL þMK;L;M�1RM

ðB8f ÞK;L;M ¼KK�1;L;M RK þLK;L�1;M RL þMK;L;M�1RM ð9Þ
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The vectors RK, RL, and RM can now be discretized by differencing the coordinate variables with respect to K,
L, and M.
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where n represents either x, y, or z. Then, for example, the discretized (RK)K, L, M can be computed as shown in
(11).
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Using these definitions along with the Bi matrices, one can compute the elements of the diffusion matrix, A,
according to (12).
VA ¼ � 1

8

X8
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ðBiÞT � ðBiÞ ð12Þ
The result of this computation is a 19-point stencil, which is expected. In the original 2D method, Ker-
shaw uses a Taylor expansion to show that the discrete operator must satisfy six equations. However, a
six point coupling could not be used while preserving symmetry, which led him to a nine-point stencil.
This same exercise can be carried out in three dimensions. In this case ten equations must be satisfied,
and a 19-point scheme is the smallest stencil that still preserves rotational symmetry. The matrix elements
are listed in (13) through (22). Since the matrix is symmetric, only the upper triangular elements are
shown.
V K;L;M AðK;L;MÞ;ðK;L;MÞ

¼ � 1

2
R2

K;L;MðRKÞ2Kþ1;L;M þ K2
K;L;MðRLÞ2K;Lþ1;M

n
þ C2

K;L;MðRMÞ2K;L;Mþ1 þ C2
K;L;M�1ðRMÞ2K;L;M�1

þ K2
K;L�1;MðRLÞ2K;L�1;M þ R2

K�1;L;MðRKÞ2K�1;L;M þ C2
K;L;M þ C2

K;L;M�1

� �
ðRMÞ2K;L;M

þ K2
K;L;M þ K2

K;L�1;M

� �
ðRLÞ2K;L;M þ R2

K;L;M þ R2
K�1;L;M

� �
ðRKÞ2K;L;M

þ CK;L;M � CK;L;M�1ð Þ KK;L;M � KK;L�1;Mð ÞðRLÞK;L;M � ðRMÞK;L;M
þ CK;L;M � CK;L;M�1ð Þ RK;L;M � RK�1;L;Mð ÞðRKÞK;L;M � ðRMÞK;L;M
þ KK;L;M � KK;L�1;Mð Þ RK;L;M � RK�1;L;Mð ÞðRKÞK;L;M � ðRLÞK;L;M

o
ð13Þ

V K;L;M AðK;L;MÞ;ðKþ1;L;MÞ

¼ � 1

4
RK;L;M �2RK;L;M ðRKÞ2Kþ1;L;M þ ðRKÞ2K;L;M

� �n
þ CKþ1;L;M � CKþ1;L;M�1ð ÞðRKÞKþ1;L;M � ðRMÞKþ1;L;M

þ CK;L;M�1 � CK;L;Mð ÞðRKÞK;L;M � ðRMÞK;L;M þ KKþ1;L;M � KKþ1;L�1;Mð ÞðRKÞKþ1;L;M � ðRLÞKþ1;L;M

þ KK;L�1;M � KK;L;Mð ÞðRKÞK;L;M � ðRLÞK;L;M
o

ð14Þ

V K;L;M AðK;L;MÞ;ðK�1;Lþ1;MÞ

¼ � 1

4
RK�1;Lþ1;MKK;L;MðRKÞK;Lþ1;M � ðRLÞK;Lþ1;M

n
þKK�1;L;MRK�1;L;MðRKÞK�1;L;M � ðRLÞK�1;L;M

o
ð15Þ



M. Fatenejad, G.A. Moses / Journal of Computational Physics 227 (2008) 2187–2194 2191
V K;L;M AðK;L;MÞ;ðK;Lþ1;MÞ

¼ � 1

4
KK;L;M �2KK;L;M ðRLÞ2K;Lþ1;M þ ðRLÞ2K;L;M

� �n
þ CK;Lþ1;M � CK;Lþ1;M�1ð ÞðRLÞK;Lþ1;M � ðRMÞK;Lþ1;M

þ CK;L;M�1 � CK;L;Mð ÞðRLÞK;L;M � ðRMÞK;L;M þ RK;Lþ1;M � RK�1;Lþ1;Mð ÞðRLÞK;Lþ1;M � ðRKÞK;Lþ1;M

þ RK�1;L;M � RK;L;Mð ÞðRLÞK;L;M � ðRKÞK;L;M
o

ð16Þ

V K;L;M AðK;L;MÞ;ðKþ1;Lþ1;MÞ

¼ 1

4
RK;L;MKKþ1;L;MðRKÞKþ1;L;M � ðRLÞKþ1;L;M

n
þKK;L;MRK;Lþ1;MðRKÞK;Lþ1;M � ðRLÞK;Lþ1;M

o
ð17Þ

V K;L;M AðK;L;MÞ;ðK;L�1;Mþ1Þ

¼ � 1

4
KK;L�1;Mþ1CK;L;MðRLÞK;L;Mþ1 � ðRMÞK;L;Mþ1

n
þKK;L�1;MCK;L�1;MðRLÞK;L�1;M � ðRMÞK;L�1;M

o
ð18Þ

V K;L;M AðK;L;MÞ;ðK�1;L;Mþ1Þ

¼ � 1

4
RK�1;L;Mþ1CK;L;MðRKÞK;L;Mþ1 � ðRMÞK;L;Mþ1

n
þRK�1;L;MCK�1;L;MðRKÞK�1;L;M � ðRMÞK�1;L;M

o
ð19Þ

V K;L;M AðK;L;MÞ;ðK;L;Mþ1Þ

¼ 1

4
CK;L;M 2CK;L;M ðRMÞ2K;L;Mþ1 þ ðRMÞ2K;L;M

� �n
þ KK;L�1;Mþ1 � KK;L;Mþ1ð ÞðRLÞK;L;Mþ1 � ðRMÞK;L;Mþ1

þ KK;L;M � KK;L�1;Mð ÞðRLÞK;L;M � ðRMÞK;L;M þ RK�1;L;Mþ1 � RK;L;Mþ1ð ÞðRMÞK;L;Mþ1 � ðRKÞK;L;Mþ1

þ RK;L;M � RK�1;L;Mð ÞðRMÞK;L;M � ðRKÞK;L;M
o

ð20Þ

V K;L;M AðK;L;MÞ;ðKþ1;L;Mþ1Þ

¼ 1

4
RK;L;MCKþ1;L;MðRKÞKþ1;L;M � ðRMÞKþ1;L;M

n
þRK;L;Mþ1CK;L;MðRKÞK;L;Mþ1 � ðRMÞK;L;Mþ1

o
ð21Þ

V K;L;M AðK;L;MÞ;ðK;Lþ1;Mþ1Þ

¼ 1

4
KK;L;MCK;Lþ1;MðRLÞK;Lþ1;M � ðRMÞK;Lþ1;M

n
þKK;L;Mþ1CK;L;MðRLÞK;L;Mþ1 � ðRMÞK;L;Mþ1

o
ð22Þ
These expressions result in the formation of a symmetric positive definite matrix, and reduce to the 2D x–y

Kershaw equations in problems with uniformity in the z direction. In the case of an orthogonal grid the equa-
tions greatly simplify since
ðRKÞK;L;MðRLÞK;L;M ¼
ðRKÞK;L;MðRMÞK;L;M ¼
ðRLÞK;L;MðRMÞK;L;M ¼ 0:
It can then be shown that as the mesh becomes uniform and orthogonal, the 3D Kershaw equations reduce to
the standard seven-point, second-order scheme.

The boundary conditions are addressed through the use of ghost zones which surround the physical
domain. A description of the boundaries along the K direction follows, and a similar procedure can be fol-
lowed along the L and M directions. Zones that are part of the physical mesh lie between indices Ks and
Ke. Using this notation, the ghost zones would be labeled Ks � 1 and Ke + 1.

The values of RK, RL, and RM in the ghost zones must be computed. Simply let ðRLÞKs�1 ¼ ðRMÞKs�1 ¼ 0
and ðRLÞKeþ1 ¼ ðRMÞKeþ1 ¼ 0. The value of RK is computed as shown earlier, however only mesh points on
the boundary of the physical domain, points with index Ks � 1 and Ke, are used, and the points with index
Ks � 2 and Ke + 1 are not needed.

Next, the value of R must be computed on faces between the physical and ghost zones. For a zero-flux
(Neumann) boundary condition, simply let RKs�1 ¼ RKe ¼ 0. For fixed f (Dirichlet) boundary conditions, R
can be computed as usual, while setting jKs�1 ¼ jKeþ1 ¼ 0. The matrix is computed using Eqs. (13) through
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(22), but terms multiplying the boundary value of f must be moved to the right hand side of the discretized
diffusion equation. Finally, let K = C = 0 on surfaces between ghost zones.

This procedure is easily replicated in the L and M directions. Note that the difference equations never
require the value of RK, RL, or RM, be specified on the problem corners or edges. Furthermore the boundary
conditions do not require the definition of the position of mesh points on the outward face of the ghost zones.

3. Computational results

The matrix B used to compute the diffusion matrix is defined as
F
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and as in the 2D method [1], by defining B as a function of the vectors RK, RL, and RM an assumption is made
that the coordinates are a smooth function of the logical variables K, L, and M. This leads to a requirement
that the mesh lines be smooth in order to obtain first order accuracy, which was demonstrated in [2] for the 2D
method. In this section, the result of a convergence test is shown on smooth/non-orthogonal and non-smooth/
non-orthogonal meshes to demonstrate the convergence properties of the 3D method.

The two meshes used for the convergence test are shown in Fig. 2. The non-smooth, non-orthogonal
mesh is shown on the left [3] and is simply an extension of the original Kershaw Z-mesh which appeared
in [1]. It has the property that it does not become smoother as the mesh is refined. The smooth, non-orthog-
onal is illustrated on the right of Fig. 2. This mesh remains non-orthogonal as the resolution is increased
while also becoming smoother. The convergence test involves a simple problem where the top boundary is
fixed at a temperature of 1 eV, the bottom boundary is fixed at 0 ev, and a steady-state solution is used to
compute the error. The conductivity is set to a constant value of 1 � 1011 ergs/cm/eV/s, resulting in a linear
steady-state temperature distribution in the z direction. The physical domain is cube with sides of length
20 lm. Fig. 3 shows both meshes with temperature contour lines superimposed. Because the temperature
is treated as a zone centered quantity, the mesh lines in this figure trace the zone centers rather than the
vertices. This helps reduce artificial distortions in the plotting caused by interpolating the temperatures
to the position of the vertices.
error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
K;L;M f exact

K;L;M � f numeric
K;L;M
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P
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K;L;M

� �2

vuut ð24Þ
ig. 2. The non-smooth, non-orthogonal 3D Kershaw mesh (left) and the smooth, non-orthogonal 3D Kershaw mesh (right).



Fig. 3. The non-smooth (left) and smooth (right) Kershaw meshes with mesh lines intersecting zone centers rather than vertices. Thick
black lines represent temperature contours.
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The error was computed using the L2 norm shown in (24). A plot of the convergence test results is
shown in Fig. 4. The average zone width is computed by simply dividing the number of grid points in
a direction by the width of the domain, in this case, 20 lm. For example, an average zone width of
1 lm corresponds to using twenty grid points in the I, J, and K directions. For larger zone widths (fewer
mesh points), the lines on the smooth mesh are still somewhat jagged. Once a sufficient number of points
are added the problem falls into the asymptotic regime and the order of convergence can be determined.
For this reason, the line in Fig. 4 corresponding to the smooth mesh is only drawn through three of the
five-points. Overall, the behavior is as expected. The 3D scheme is at least first order convergent on smooth
meshes, and has difficulty converging on non-smooth meshes. This is the same significant drawback that is
present in the 2D method.
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4. Conclusions

Expressions for the matrix elements of a symmetric positive definite matrix A that approximates the diffu-
sion operator on non-orthogonal 3D x–y–z meshes are derived using the Kershaw formulation. This results in
a 19-point stencil. Convergence testing of this scheme on non-orthogonal 3D meshes confirms that its prop-
erties are consistent with those of the original Kershaw scheme. The method is relatively simple to implement
in simulation codes, which comes at the cost of accuracy. Specifically, the method is generally less than second
order accurate and care must be taken when the mesh is not smooth, as this can further degrade the accuracy.
The resulting matrix is not an M-matrix which can lead to negative temperatures, although non were obtained
in the convergence test that was run. However, within these limitations, the 3D method has the potential to
serve as a viable method for solving the diffusion equation on non-orthogonal meshes in 3D radiation hydro-
dynamics simulations. This scheme is currently implemented in the 3D version of the DRACO laser fusion
simulation code [4].
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